
Analyzing and Mitigating the SSB

Vulnerability in an MDP-Equipped

RISC-V Processor

Tuo Chen1, Reoma Matsuo2, Ryota Shioya2, and Kuniyasu Suzaki1

1 Institute of Information Security

mgs234502@iisec.ac.jp，suzaki@iisec.ac.jp
2 Department of Creative Informatics, Graduate School of Information Science and

Technology, The University of Tokyo

matsuo@rsg.ci.i.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

International Workshop on Security (IWSEC)

2025-11-25 ~ 27 Fukuoka, Japan

mailto:mgs234502@iisec.ac.jp
mailto:suzaki@iisec.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp

22

▪ Overview

▪ Open-source RISC-V processor RSD

▪ Speculative Store Bypass (SSB) vulnerability

▪ Attack verification

▪ Hardware mitigation

▪ Conclusion

Contents

33

In-order CPUOut-of-order CPU

Speculative prefetchingSpeculative execution

Branch

prediction: PHT,

BTB, RSB, etc

Memory

dependence

prediction

Processors of various ISAs (including RISC-V)

Microarchitectural attacks on CPUs

Transient execution

attacks (TEAs)

Spectre-type

Meltdown-type

Side channel attacks

(SCAs): Cache

timing, power

analysis, etc.

Others: LVI, etc

Some in

RISC-V

None in

RISC-V

▪ Transient execution vulnerabilities (TEVs) identified in CPUs

Overview

▪ Existing gap

▪ Current TEV research is heavily

concentrated on the BOOM.

Transient execution attacks

against RISC-V implementations

under more aggressive prediction

strategies remain unexamined.

▪ Growing attention on situation of RISC-V implementations

44

▪ Research objectives

1. Explore the feasibility

of the Spectre-type SSB

attack against a memory

dependence predictor

(MDP)-equipped RISC-

V CPU, “RSD”.

2. Confirm the results

using “Konata”, a

pipeline visualization

tool.

3. Investigate mitigations

if the SSB is verified.

Overview (cont’d)

CVE- Name（Alias） Transient execution attacks => RISC-V CPU

2017-

5753
BCB (v1)

Gonzalez et al., UCB report, 2019 => BOOMv2

F. A. Fuchs, KTH, 2021 => Tooba

Jin et al., ACM Trans. Archit. Code Optim. 2023 =>

BOOMv3

Cheng et al., USENIX Security 24 => BOOMv3

2017-

5715
BTI (v2)

2017-

5754
RDCL (v3) Lin et al, IEEE MWSCAS 2022 => BOOMv3

2018-

15572
Ret2spec (v5)

F. A. Fuchs, KTH, 2021 => Tooba

Jin et al., ACM Trans. Archit. Code Optim. 2023 =>

BOOMv3

Cheng et al., USENIX Security 24 => BOOMv3

2018-

3639
SSB (v4)

F. A. Fuchs, KTH, 2021 => Tooba

Jin et al., ACM Trans. Archit. Code Optim. 2023 =>

BOOMv3

Cheng et al., USENIX Security 24 => BOOMv3

Our work => RSD

Unind

exed

SpectreRewin

d Jin et al., ACM Trans. Archit. Code Optim. 2023 =>

BOOMv3
Spectre-TLB

Bombard
Hur et al., ACM CCS 2022 => BOOM & Nutshell

Birgus

55Open-source RISC-V processor RSD

▪ RSD: an RV32IMF out-of-order superscalar processor core

▪ Advantages: compact, can be synthesized for small FPGAs; and efficient,

featuring a memory dependence prediction mechanism.

▪ Conference paper: S. Mashimo et al., “An Open Source FPGA-Optimized

Out-of-Order RISC-V Soft Processor,” in 2019 International Conference on

Field-Programmable Technology (ICFPT), Dec. 2019, pp. 63–71.

▪ Main RSD repository: https://github.com/rsd-devel/rsd

▪ Forked and modified RSD repo: https://github.com/cctsirjin/rsd-mod

https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://github.com/rsd-devel/rsd
https://github.com/rsd-devel/rsd
https://github.com/rsd-devel/rsd
https://github.com/cctsirjin/rsd-mod
https://github.com/cctsirjin/rsd-mod
https://github.com/cctsirjin/rsd-mod

66

▪ Overview

▪ Open-source RISC-V processor RSD

▪ Speculative Store Bypass (SSB) vulnerability

▪ Attack verification

▪ Hardware mitigation

▪ Conclusion

Contents

77Speculative Store Bypass (SSB) vulnerability (1)

▪ Exploiting speculative load/store execution

1. The first n (temporarily let n=1) store-load instruction pair I1 + I2 enters the

pipeline and accesses the same memory address.

2. In the absence of prior execution, the CPU cannot determine whether load I2

is dependent on store I1. To accelerate execution, typically it speculatively

assumes they are independent.

88Speculative Store Bypass (SSB) vulnerability (2)

▪ Exploiting speculative load/store execution

1. The first n (temporarily let n=1) store-load instruction pair I1 + I2 enters the

pipeline and accesses the same memory address.

2. In the absence of prior execution, the CPU cannot determine whether load I2

is dependent on store I1. To accelerate execution, typically it speculatively

assumes they are independent.

99Speculative Store Bypass (SSB) vulnerability (3)

▪ Exploiting speculative load/store execution

3. Owing to that assumption, secret data are loaded from the memory into the

cache in 1(b), simultaneously with the store operation during 1(a).

4. The attacker then conducts a side-channel attack on the cache to extract the

secret data, as depicted in 1(c). The detection of memory ordering violation

and rollback later at I5 cannot undo this damage.

1010Speculative Store Bypass (SSB) vulnerability (4)

▪ Exploiting speculative load/store execution

3. Owing to that assumption, secret data are loaded from the memory into the

cache in 1(b), simultaneously with the store operation during 1(a).

4. The attacker then conducts a side-channel attack on the cache to extract the

secret data, as depicted in 1(c). The detection of memory ordering violation

and rollback later at I5 cannot undo this damage.

1111Speculative Store Bypass (SSB) vulnerability (5)

▪ In subsequent executions after the initial one(s) …

▪ Processors w/o an MDP, such as BOOM, can be constantly exploited.

▪ An MDP is anticipated to form a partial defense, as depicted in 2(a) and 2(b)

of store-load pair I8 + I9. However, the initial n round(s) remain vulnerable.

1212Speculative Store Bypass (SSB) vulnerability (6)

▪ In subsequent executions after the initial one(s) …

▪ Processors w/o an MDP, such as BOOM, can be constantly exploited.

▪ An MDP is anticipated to form a partial defense, as depicted in 2(a) and 2(b)

of store-load pair I8 + I9. However, the initial n round(s) remain vulnerable.

1313

▪ Overview

▪ Open-source RISC-V processor RSD

▪ Speculative Store Bypass (SSB) vulnerability

▪ Attack verification

▪ Hardware mitigation

▪ Conclusion

Contents

1414Attack verification (1)

▪ Identifying the MDP trigger value n of RSD

▪ Since RSD is open source, it is possible to determine the n by analyzing its

source codes. However, compared to this theoretical approach …

1515Attack verification (2)

▪ Identifying the MDP trigger value n of RSD

▪ Since RSD is open source, it is possible to determine the n by analyzing its

source codes. However, compared to this theoretical approach …

▪ A more empirical method, involves executing a script that is prone to

inducing memory ordering violations, and subsequently, observing the

pipeline's behavior through a visualization tool, “Konata”.

C language code of the test script

RISC-V assembly code of the store-load pair

Prone to inducing a store-load

ordering violation

Experiment platform:

Verilator and ZedBoard:

1616Attack verification (3)

▪ Identifying the MDP trigger value n of RSD

▪ From Fig. 1, it can be confirmed that our early assumption of n = 1 is correct.

Also from Fig. 2, it is evident that the learned dependency was applied.

Fig. 2: Pipeline behavior in subsequent loops of the MDP test (from the 2nd execution onward)

Fig. 1: Pipeline behavior during the initial round of MDP test

1717Attack verification (4)

▪ SSB attack process and result

▪ Switching among addresses victimFunc_00(), … , _N-1() to keep exploiting

the property n = 1 and extracting secret characters successively.

1818Attack verification (5)

▪ SSB attack process and result

▪ The secret string “RISCV” was correctly inferred. The

execution log was also analyzed using the Konata tool.

1919Attack verification (6)

▪ SSB attack process and result

▪ The secret string “RISCV” was correctly inferred. The

execution log was also analyzed using the Konata tool.

▪ Part 1 represents an intentionally delayed store operation. RSD issues a

speculative load operation in Part 2, entering a transient execution state and

causing one secret character into the dcache. It’s later rolled back in Part 3.

2020

▪ Overview

▪ Open-source RISC-V processor RSD

▪ Speculative Store Bypass (SSB) vulnerability

▪ Attack verification

▪ Hardware mitigation

▪ Conclusion

Contents

2121Hardware mitigation (1)

▪ PseudoConflict: minor modifications to the RSD’s μ-arch

▪ Idea: When a preceding store has an unresolved address, a subsequent load

will be prevented from memory accesses, even in the event of a cache miss.

2222Hardware mitigation (2)

▪ PseudoConflict: minor modifications to the RSD’s μ-arch

▪ Idea: When a preceding store has an unresolved address, a subsequent load

will be prevented from memory accesses, even in the event of a cache miss.

▪ The proposed method is illustrated in p(b). If the address of the preceding

store I1 remains unresolved, a locking mechanism can be introduced starting

from the eXecution stage of I2 in place of the former Memory stage.

2323Hardware mitigation (3)

▪ Implementation of PseudoConflict

▪ Store Queue (SQ): if a preceding store has been issued, its address and data

are recorded. During the execution of a load, the system checks whether any

preceding stores contain unresolved addresses.

▪ Miss Status Handling Registers (MSHRs): if a preceding store operation

with an unresolved address exists, MSHR allocation will be suppressed.

2424Hardware mitigation (4)

▪ Results after application of PseudoConflict

▪ On the same Verilator and ZedBoard platforms,

the effectiveness of mitigation was confirmed.

2525Hardware mitigation (5)

▪ Results after application of PseudoConflict

▪ On the same Verilator and ZedBoard platforms,

the effectiveness of mitigation was confirmed.

▪ Evaluation of the mitigation

▪ The CoreMark score / MHz (CM / MHz) and the Dhrystone MIPS (DMIPS):

The baseline and the proposal are identical or nearly identical.

▪ FPGA resource utilization: The mitigation leads to only a slight increase that

is insignificant in the demand for LUTs and registers.

▪ The operation frequency of the RSD remains unchanged, as the proposed

method does not affect the critical path.

CM/MHz DMIPS LUT Register

Baseline 2.675 (100%) 201.0 (100%) 25956 (100%) 11901 (100%)

Proposal 2.675 (100%) 200.6 (99.8%) 26028 (100.28%) 11904 (100.03%)

2626Hardware mitigation (6)

▪ Benefits of PseudoConflict

▪ Since the modified RSD still performs speculative execution of loads, it does

not interfere with the normal operation of the MDP and preserves the initial

memory dependency learning process.

▪ Low-cost and highly efficient. Using precisely the characteristic of an SSB

attack as a prerequisite to trigger the defense, the impact on program

executions is minimal, resulting in low overhead. Hardware-based approach

also offers greater cost advantages over software solutions.

▪ Versatile. Not dependent on the specific design of RSD and may be ported to

other OoO CPUs.

2727Hardware mitigation (7)

▪ Current limitations of PseudoConflict

▪ In implementing this mitigation, it is crucial to examine the compatibility

with other CPU components beyond the SQ and data cache, such as the

Replay Queue (RQ) of RSD in this paper, necessitating more granular

hardware adjustments.

▪ We have not yet conducted a statistical analysis on the proportion of normal,

non-malicious programs exhibiting "preceding store with an unresolved

address" behavior, similar to SSB attacks, across various real-world

application scenarios. Therefore, we cannot accurately estimate the extent

of the impact that widespread adoption of this mitigation across many CPUs

would cause.

2828Conclusion

▪ Findings

▪ For an OoO CPU like RSD, even if an MDP is present and only the first loop

of execution is susceptible to SSB, it is still sufficient for exploitation.

▪ On the other hand, this vulnerability can also be remedied with minimal effort

at the hardware level, and the mitigation is generic.

▪ Future work

▪ Adversary: Enhancing the existing SSB algorithm using new methodologies

to achieve similar or improved results and efficiency.

▪ Defense: Conduct additional assessments of performance impact to support

large-scale adoption of PseudoConflict's framework.

	Slide 1: Analyzing and Mitigating the SSB Vulnerability in an MDP-Equipped RISC-V Processor
	Slide 2: Contents
	Slide 3: Overview
	Slide 4: Overview (cont’d)
	Slide 5: Open-source RISC-V processor RSD
	Slide 6: Contents
	Slide 7: Speculative Store Bypass (SSB) vulnerability (1)
	Slide 8: Speculative Store Bypass (SSB) vulnerability (2)
	Slide 9: Speculative Store Bypass (SSB) vulnerability (3)
	Slide 10: Speculative Store Bypass (SSB) vulnerability (4)
	Slide 11: Speculative Store Bypass (SSB) vulnerability (5)
	Slide 12: Speculative Store Bypass (SSB) vulnerability (6)
	Slide 13: Contents
	Slide 14: Attack verification (1)
	Slide 15: Attack verification (2)
	Slide 16: Attack verification (3)
	Slide 17: Attack verification (4)
	Slide 18: Attack verification (5)
	Slide 19: Attack verification (6)
	Slide 20: Contents
	Slide 21: Hardware mitigation (1)
	Slide 22: Hardware mitigation (2)
	Slide 23: Hardware mitigation (3)
	Slide 24: Hardware mitigation (4)
	Slide 25: Hardware mitigation (5)
	Slide 26: Hardware mitigation (6)
	Slide 27: Hardware mitigation (7)
	Slide 28: Conclusion

