@
A INSTITUTE of INFORMATION SECURITY

International Workshop on Security (IWSEC)
2025-11-25 ~ 27 Fukuoka, Japan

Analyzing and Mitigating the SSB
Vulnerability in an MDP-Equipped
RISC-" Processor

Tuo Chen', Reoma Matsuo?, Ryota Shioya?, and Kuniyasu Suzaki!

U Institute of Information Security

mes234502@iisec.ac.jp, suzaki(@iisec.ac.ip

2 Department of Creative Informatics, Graduate School of Information Science and
Tlechnology, The University of Tokyo

matsuo(@rsg.ci.i.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

mailto:mgs234502@iisec.ac.jp
mailto:suzaki@iisec.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp

Contents - 2
i 4 INSTITUTE of INFORMATION SECURITY

= Overview

* Open-source RISC-V processor RSD

» Speculative Store Bypass (SSB) vulnerability
» Attack verification

* Hardware mitigation

= Conclusion

Overview 3

@
‘ A INSTITUTE of INFORMATION SECURITY

* Transient execution vulnerabilities (TEVs) 1dentified in CPUs

* Growing attention on situation of RISC-" implementations

u Existing gap Processors of various ISAs (including RISC-")

Out-of-order CPU In-order CPU

= Current TEV research 1s heavil
M Speculative execution Speculative prefetching

T z —
concentrated on the BOOM. Memory Branch

.] dependence) | | prediction: PHT,) | Some in
Transient execution attacks predictio TB, RSB, ete/ | R1§(-

N——" N—

against RISC-V implementations . Noremn ; |

RISC- : 1

under more aggressive prediction

Spectre-type e

strategies remain unexamined. Transient -
pe
attacks (T

Others: LVI, etc

Microarchitectural attacks on CPUs

Overview (cont’d)

= Research objectives

.

Explore the feasibility
of the Spectre-type SSB
attack against a memory
dependence predictor
(MDP)-equipped RISC-

CPU, “RSD”.
Confirm the results
using “Konata”, a
pipeline visualization
tool.

Investigate mitigations

1f the SSB i1s verified.

4

A INSTITUTE of INFORMATION SECURITY

Name (Alias)

Transient execution attacks => RISC-V CPU

2017- BCB (v1) Gonzalez et al., UCB report, 2019 => BOOMv?2
5753 v F. A. Fuchs, KTH, 2021 => Tooba
Jin et al., ACM Trans. Archit. Code Optim. 2023 =>
2017- BTI (v2) BOOMYv3
STIS Cheng et al., USENIX Security 24 => BOOMV3
?7);_ RDCL (v3) Lin et al, IEEE MWSCAS 2022 => BOOMv3
F. A. Fuchs, KTH, 2021 => Tooba
2018- Ret2spec (v5) Jin et al., ACM Trans. Archit. Code Optim. 2023 =>
15572 P BOOMv3
Cheng et al., USENIX Security 24 => BOOMvV3
F. A. Fuchs, KTH, 2021 => Tooba
Jin et al., ACM Trans. Archit. Code Optim. 2023 =>
3639 Cheng et al., USENIX Security 24 => BOOMV3
Our work => RSD
SpectreRewin
d Jin et al., ACM Trans. Archit. Code Optim. 2023 =>
. BOOMv3
Unind | Spectre-TLB
exed
Bombard
Hur et al., ACM CCS 2022 => BOOM & Nutshell
Birgus

Open-source RISC-V processor RSD 4 5
B A INSTITUTE of INFORMATION SECURITY

= RSD: an RV32IMF out-of-order superscalar processor core
= Advantages: compact, can be synthesized for small FPGAs; and efficient,
featuring a memory dependence prediction mechanism.

= Conference paper: S. Mashimo et al., “An Open Source FPGA-Optimized

Out-of-Order RISC-V Soft Processor.” in 2019 International Conference on
Field-Programmable Technology (ICFPT), Dec. 2019, pp. 63-71.

= Main RSD repository: https://github.com/rsd-devel/rsd

» Forked and modified RSD repo: https://github.com/cctsirjin/rsd-mod

o o

Fetcher Decoder Renamer

Unified Issue Queue (16 entries)

Rex glster File (Int 64 entries)

I
Register File (FP 64 entries)

https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://ieeexplore.ieee.org/abstract/document/8977924
https://github.com/rsd-devel/rsd
https://github.com/rsd-devel/rsd
https://github.com/rsd-devel/rsd
https://github.com/cctsirjin/rsd-mod
https://github.com/cctsirjin/rsd-mod
https://github.com/cctsirjin/rsd-mod

Contents - 6
B A INSTITUTE of INFORMATION SECURITY

» Speculative Store Bypass (SSB) vulnerability

Speculative Store Bypass (SSB) vulnerability (1) 7
. /’ INSTITUTE of INFORMATION SECURITY

= Exploiting speculative load/store execution
1. The first n (temporarily let n=1) store-load instruction pair /, + 7, enters the
pipeline and accesses the same memory address.
2. In the absence of prior execution, the CPU cannot determine whether load 7,

1s dependent on store /,. To accelerate execution, typically it speculatively

assumes they are independent.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 20
Initial store- ading »

load pair(s) Vulnerable initial speculative execution Clock cycle

11 5w 25,0(@3) o) .

I,:lw ad, 0(a1) 3 4 5

2

Speculative Store Bypass (SSB) vulnerability (2) 8
B A INSTITUTE of INFORMATION SECURITY

= Exploiting speculative load/store execution
1. The first n (temporarily let n=1) store-load instruction pair /, + /, enters the
pipeline and accesses the same memory address.

2. In the absence of prior execution, the CPU cannot determine whether load 7,

is dependent on store /,. To accelerate execution, typically it speculatively

assumes they are independent.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 20
Initial store- ading »

load pair(s) Vulnerable initial speculative execution Clock cycle

I,:lw ad, 0(a1)

2 3 4 5

Speculative Store Bypass (SSB) vulnerabulity (3) 9
B) INSTITUTE of INFORMATION SECURITY

= Exploiting speculative load/store execution

3. Owing to that assumption, secret data are loaded from the memory into the

cache in 1(b), simultaneously with the store operation during 1(a).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 20

Initial store- L . . e >
load pair(s) Vulnerable initial speculative execution Clock cycle
I,:lw a5, 0(a1) \ |
S 00 00 g R S £
I5: lw a5, 0(a1) Memory Secret Cachel Replay=>| F |D | S | X Kfl ~ ‘Cm
i Instruction 1(c) @ﬁ

Attacker

Speculative Store Bypass (SSB) vulnerability (4)
) INSTITUTE of INFORMATION SECURITY

= Exploiting speculative load/store execution

10

4. The attacker then conducts a side-channel attack on the cache to extract the

secret data, as depicted in 1(c). The detection of memory ordering violation

and rollback later at /; cannot undo this damage.

Initial store-
load pair(s)

I,:lw ad, 0(a1)

I5: lw ad, 0(a1)

s

Attacker

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20
A >
Vulnerable initial speculative execution Clock cycle
<= Delayed
FID|s|x]mMt1p): 2 3 4 5 <= Gets cariceled
o o = =
Memory Secret Cache Replay =>| F S | X ﬂn ~ ‘Cm
K i
i Instruction 1(c) @jﬁ

Speculative Store Bypass (SSB) vulnerability (5) 11
B A INSTITUTE of INFORMATION SECURITY

= In subsequent executions after the initial one(s) ...

= Processors w/o an MDP, such as BOOM, can be constantly exploited.
= An MDP is anticipated to form a partial defense, as depicted in 2(a) and 2(b)

of store-load pair /; + I,. However, the 1nitial » round(s) remain vulnerable.

15 16 .. 20 .. 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Initial store- ™" =~ T >
load pair(s) Clock cycle
IISWESIOES) | ~ O <= Delayec
Ir:lwas, O(al) Vulnerable initial speculative execution

S . => Repeated in succeeding execution if w/o an MDP

Speculative Store Bypass (SSB) vulnerabulity (6) 12
B /, INSTITUTE of INFORMATION SECURITY

* In subsequent executions after the initial one(s) ...

= Processors w/o an MDP, such as BOOM, can be constantly exploited.
= An MDP is anticipated to form a partial defense, as depicted in 2(a) and 2(b)

of store-load pair /; + /,. However, the 1nitial » round(s) remain vulnerable.

15 16 .. 20 .. 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Initial store- ™" T T

load pair(s) Clock cycle
HESWES0E) | ~ B <- Delayed

I>:lw ab, 0(al)

-

Vulnerable initial speculative execution

§ . => Repeated in succeeding execution if w/o an MDP

Isslwad,0(@l) |~ | X |M| ~ ICm
§ . Secure following execution w/ an MDP

Lo S0 L FID|S 1 2 3 4|X|M|W Cm|<=Delayed

Ip: lw a5, O(a1) FID/IS 1 2 3 4 5 6 7|X[M{w[Cm

.) - g - —
Folllowmg store 2(a) Dependency learned and applied 2(b) <= Also delayed
oad pairs

! Instruction

Contents a 13

I /’ INSTITUTE of INFORMATION SECURITY

= Overview

= Open-source RISC-V processor RSD

= Speculative Store Bypass (SSB) vulnerability
= Attack verification

* Hardware mitigation

= Conclusion

Attack verification (1) o 14
i A INSTITUTE of INFORMATION SECURITY

* [dentifying the MDP trigger value n of RSD

= Since RSD is open source, it 1s possible to determine the n by analyzing its

source codes. However, compared to this theoretical approach ...

Attack verification (2)

15

A INSTITUTE of INFORMATION SECURITY

* [dentifying the MDP trigger value n of RSD

* A more empirical method, involves executing a script that is prone to

inducing memory ordering violations, and subsequently, observing the

pipeline's behavior through a visualization tool, “Konata”.

__attribute_ ((noinline)) int test (volatile

int«

{

a, wvolatile int+ b, int n)
int j = 0;
for (int i = 0; i < n; i

j += =b;

main{){
test (&x, &x,
return 0;

1000) ;

1 srail ab,ad,1

2 add ab,ab,ad

3 addi ab,ab5,1

\ ?"EE Eﬁtﬁfﬂﬁﬁﬁ
RTINS ﬁ 1w ab,ﬂ{al}§

) et 3HT53:3

7 add a0, a0, as

8 bne az,ad, .L3

9 rel

P’gfone to inducing a store-load
ordering violation

C language code of the test script

Experiment platform:
Verilator and ZedBoard:

VERILATOR

Attack verification (3) - 16

A INSTITUTE of INFORMATION SECURITY

= Identifying the MDP trigger value n of RSD

= From Fig. 1, it can be confirmed that our early assumption of n = [is correct.

Also from Fig. 2, it is evident that the learned dependency was applied.

12730: s54568 (t6: r12688):
12731: 554572 (t6: ri2689):
12732: s54576 (t0: ri12618):

42733 554588 (t8: ri2611):

28881e9c: srai a5, a4, ax1
208elea@: add a5, a5, a4
8@eelead: addi a5, a5, exl
2@eeleal: sw a5, @x@(a3)

FREERLARRERRBRNNNLY ““““““ BEARERARERARNERNRERNLY
12?34 554584 (t@: re): eedeleac: lw a5, @xe(al

Cm (Commit)

£ [ealoc[tlos[sclis| el X [wln] (x]ea8 (line 12733): store from a5 to [a3]

F [pd]Dc[Rn[Ds[sc 1 [1s[Rr| x [Rw[cm] ‘

L R ~ (Pd (Dc (Rn (Ds [(ScfTs | Rr | X |Mt|Ma|Rw 1 2 3 4 5 6 7 8 9 10 [Cmgl

Bl " 0x1eac (line 12734): sepculatively load from [al] to aS

12736: 5545892 (té: re)

Masssnununsnsnnsnannannnnannnnnnnns LLLEY) 3 ----,.--: --------- . . po K PL?T" LR

12738: s5460@ (teé: r12613):
12739: 554604 (t@: rl2614):
12749: s54608 (t6: r12615):

12745: 554628 (t8: ri2616):
12746: 554632 (t8: ri2617):

12747; 554636 (t0: r12618):
4272817554846 " (161 r12e13) -
§2749 s54644 (10: 112620):

1)
12750: 554648 (te: I"12621)

12751: ssas52 (te: r12622): oeddib@ &2;4&"0 12749 [wp] F[pd[ocfrn]ns[sc 1 2 3 4 5 6 [zs[re[x[rs

12752: 554656 (t8: ri2623):
12753: s54664 (t8: ri2624):
12754: 554668 (t8: ri2625):

12755: 554672 (t@: F12626)
D
27567 's54676 (t0: ri2627):
22757- s54630 (t@: r12628):

@eeelebe: addi a4, a4, exl
@oeelebs: add ae, a@, as
28881eb8: bne a2, a4, exffffff

Ox1leac (linel2737): replay previous load

[mwp[F [rd]oc[rn]ps]

e

Fig. 1: Pipeline behavior during the initial round of MDP test

2eeeled9c: srai a5, a4, exil
00001ead: add a5, a5, ad
e@e@lead: addi a5, a5, exl

-----------------------3-------"---

06001eal: sw a5, 9x0(a3)
8800leac: lw a5, @x@(al)

.
eeaelebe addi a4, a4, exi

00001eb8: bne a2, a4, exff
@e8eled9c: srai a5, a4, exil
00001ea@: add a5, a5, a4
B88681ead: addi a5, a5, éxl
EEssmsmEmEmEn

'8BB81eas: su a5, x8(ad)
8800l1eac: lw a5, @x@(al)

12758: s54684 (t8: r12629):

7
12759: 554688 (t@: r12630): @88@1leba: add ad, a@, alllle 12756 to 12757 e eea] pd] oc [urn ol e el R [k R 1
5

12760: 554692 (t8: ri2631):

B88681ebd: addi a4, a4,

20e01eb8: bne a2, a4, exff

| F|pd|Dc|Rn|Ds|Sc|Is|Rr| X | Ru|cm|

(el | pd] o | Ra [0sselias] rr | x | v [ica] Sc (Scheduling) of Iw are
[mp] F [pd[oDc|rn[Ds[sc 2 Jas[rr]| x [Ru]cm = ““:..-.-.'.'.'" extended from the an lOOp
SRR EE R T RN foracorrect store-load order

maaleL] Pd.] oc [Lrn, [ins e c 4é-|Rr'|X|Ht|Ma|Rw Cm
Ds [Sc |Is|Rr| X |[Rw 1 2 3 4 5 |Cm

=1

Np| F | Pd |Dc | R

1 2 3 4 5 6 7 8 9 10]|cm|
FFFF [p] F [Pd]oc|ra]pDs|scfas[re[x[rRw 12 2 3 4 & 6 7 8 o9 18 11 12 13 14 15]cm|
[Mp] F [rd[oc]rnfos|sc[as[re[xJRw 1 2 384 s 6 7 8 9 18 11 12 13 14 15]cm|
[Mp] F[rd[Dc[mrn]bDs|scfas[re[x[rw 12 2 3 4 5 6 7 8 9 18 11 12 13 14]cm]
[Mp] F [pd][Dc]|rn]Ds[sc 1|Is|Rr‘|X|Rw--1 2 3 4 5 6 7 8 9 10 11 12 13 14]cm]|
B e i e e TR T Lok o e e e e
Thp] F [Pd]oc Rn|Ds|Sc 1 |Is]Rr]|)ﬁﬂt'|na'| Rw 1 2 3 4 5 6 7 8 9 18 11]cm §
B L e e e e e B e M s 2Pt e B L B 0 N 5

6

9
3 4 5 6 7 38 9 |cm]
7

FFFE [mp] F [pd[oc][rn]ps]se 1 Jzs[re[x[rRw 1 2 3 a 8 9 18 11 12 13 [cm|

Fig. 2: Pipeline behavior in subsequent loops of the MDP test (from the 2nd execution onward)

Attack verification (4)

= SSB attack process and result

17

A INSTITUTE of INFORMATION SECURITY

= Switching among addresses victimFunc 00(), ..., N-1() to keep exploiting

the property n = I and extracting secret characters successively.

victimFuncInit()
victimFunc_000)

Guess the 151 character off

the secrel string

£ o o

TTTTTT

probeArray[] th

=

Main me$f

- - >= =
) o I

It .

guidefArray KOS 10 BCORES v Cache timing side-
[temjArray[1]]] - . channel attack
targetldx !
(Inanother —3 1™\ _________I>_I_:
pipline lane), l/ ‘\
| AN N >
- 1 ™
tempArray(1] = Yeft shitt and Fdiv ops tempArray
targetldx; // df tempArrayIndesx. [tempArrayIndex] = O

Pointing at
sacret char 1si

(1)

L

hich take lo

2)

ng time

(6)

victimFuncInit()
victimFunc_01()
Guess the 2nd character
of the secret string

Pros

Injection => Cache SCA

(targetIdx pomnting at
secrel char 2nd. Same
procedure but at a new
fune address.)

victimFuncInit()
victimFunc_M-1()
Guess the MNith character
of the secret string

v

Injection => Cache SCA

(targetIdx pomnting at
secrel char Mih. Same
procedure but at a new
fune address.)

Time, also flow of the main() function

Attack verification (5)

18

@
' A INSTITUTE of INFORMATION SECURITY

= SSB attack process and result

= The secret string “RISCV” was correctly inferred. The

execution log was also analyzed using the Konata tool.

|
z
1
1
B
a
T

===Rtart===

Valu=: R Hit:
Valu=: I Hit:
Valu=: § Hit:
Value: C Hit:
Valus: W Hit:

===FEnd===

AW k= s

Attack verification (6) 19

@
‘ A INSTITUTE of INFORMATION SECURITY

1 ===Start=—=
2 WValus=: R Hit:
a4 WValus: I Hit:
4 Value: § Hit:
i
a
T

= SSB attack process and result

= The secret string “RISCV” was correctly inferred. The alue: € Hit-

Valus: W Hit:
===FEnd===

AW k= s

execution log was also analyzed using the Konata tool.

= Part 1 represents an intentionally delayed store operation. RSD issues a
speculative load operation in Part 2, entering a transient execution state and
causing one secret character into the dcache. It’s later rolled back in Part 3.

Part 2: speculative load
=> bypasses slow store above, then gets canceled.

Contents ° 20

_ A INSTITUTE of INFORMATION SECURITY

= Overview

= Open-source RISC-V processor RSD

= Speculative Store Bypass (SSB) vulnerability
= Attack verification

» Hardware mitigation

= Conclusion

Hardware mitigation (1) - 21
| A INSTITUTE of INFORMATION SECURITY

* PseudoConflict: minor modifications to the RSD’s p-arch

= Idea: When a preceding store has an unresolved address, a subsequent load

will be prevented from memory accesses, even in the event of a cache miss.

Hardware mitigation (2) 22

@
- A INSTITUTE of INFORMATION SECURITY

* PseudoConflict: minor modifications to the RSD’s p-arch

= Idea: When a preceding store has an unresolved address, a subsequent load
will be prevented from memory accesses, even in the event of a cache miss.

= The proposed method is illustrated in p(b). If the address of the preceding
store /, remains unresolved, a locking mechanism can be introduced starting

from the eXecution stage of /, in place of the former Memory stage.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 20

Initial store- _ _ . T >
load pair(s) Still speculatively executed but w/o secret into data cache, thus secure Clock cycle

I,:lw a5, 0(a1)

s - o e < T .

Is: lw a5, 0(a1) Memory ~ Cache i Replay=>| F |D | S | X M|~ lcm

J Instruction p(c) @é

Attacker

Hardware mitigation (3)

23

@
A INSTITUTE of INFORMATION SECURITY

* Implementation of PseudoConflict

= Store Queue (SQ): if a preceding store has been issued, its address and data

are recorded. During the execution of a load, the system checks whether any

preceding stores contain unresolved addresses.

= Miss Status Handling Registers (MSHRs): if a preceding store operation

with an unresolved address exists, MSHR allocation will be suppressed.

addr 1

data 1 .

addrn

data n

Attacker ., (5

Main memory

o

A =

Store Queue (5Q)

S o
- MSHRs
b(3)

CPU data cache

Hardware mitigation (4) 24

@
' A INSTITUTE of INFORMATION SECURITY
= Results after application of PseudoConflict | 5T .. .1l T, o
3 Value: I Hit: 1 3 Value Hit: O
= On the same Verilator and ZedBoard platforms, | 2|8 o= = jHie: 0
¢ Value:| V i‘l’.; 5 (; Value H:i_t; 0
the effectiveness of mitigation was confirmed. v —End= 7 ==<End=—-

Hardware mitigation (5) ° 25
l A INSTITUTE of INFORMATION SECURITY
= Results after application of PseudoConflict | 5T, .11 T, &
a3 Value: I Hit: 1 3 Value Hit: O
= On the same Verilator and ZedBoard platforms, —|: 2oy s e = e 0
¢ Value: V Hit: 5 6 Value H:i_t; 0

===End=== 7 ===End===

the effectiveness of mitigation was confirmed. "

= Evaluation of the mitigation

* The CoreMark score / MHz (CM / MHz) and the Dhrystone MIPS (DMIPS):

The baseline and the proposal are identical or nearly identical.

* FPGA resource utilization: The mitigation leads to only a slight increase that

is insignificant in the demand for LUTs and registers.

* The operation frequency of the RSD remains unchanged, as the proposed

method does not affect the critical path.

| CMMHz | DMIPS_ | LUT | Register

11901 (100%)

Baseline 2.675(100%) 201.0 (100%) 25956 (100%)

Proposal 2.675 (100%) 200.6 (99.8%) 26028 (100.28%)

11904 (100.03%)

Hardware mitigation (6) - 26
| 8 INSTITUTE of INFORMATION SECURITY

= Benetits of PseudoConflict

= Since the modified RSD still performs speculative execution of loads, it does

not interfere with the normal operation of the MDP and preserves the initial

memory dependency learning process.

= Low-cost and highly efficient. Using precisely the characteristic of an SSB

attack as a prerequisite to trigger the defense, the impact on program

executions is minimal, resulting in low overhead. Hardware-based approach
also offers greater cost advantages over software solutions.

= Versatile. Not dependent on the specific design of RSD and may be ported to
other OoO CPUs.

Hardware mitigation (7) - 27
| 8 INSTITUTE of INFORMATION SECURITY

= Current limitations of PseudoConflict

= In implementing this mitigation, it is crucial to examine the compatibility
with other CPU components beyond the SQ and data cache, such as the
Replay Queue (RQ) of RSD in this paper, necessitating more granular
hardware adjustments.

= We have not yet conducted a statistical analysis on the proportion of normal,
non-malicious programs exhibiting "preceding store with an unresolved
address' behavior, similar to SSB attacks, across various real-world
application scenarios. Therefore, we cannot accurately estimate the extent
of the impact that widespread adoption of this mitigation across many CPUs

would cause.

Conclusion - 28
] A INSTITUTE of INFORMATION SECURITY

* Findings
= For an OoO CPU like RSD, even if an MDP i1s present and only the first loop
of execution 1s susceptible to SSB, it is still sufficient for exploitation.
= On the other hand, this vulnerability can also be remedied with minimal effort

at the hardware level, and the mitigation is generic.

* Future work
= Adversary: Enhancing the existing SSB algorithm using new methodologies
to achieve similar or improved results and efficiency.
= Defense: Conduct additional assessments of performance impact to support

large-scale adoption of PseudoConflict's framework.

	Slide 1: Analyzing and Mitigating the SSB Vulnerability in an MDP-Equipped RISC-V Processor
	Slide 2: Contents
	Slide 3: Overview
	Slide 4: Overview (cont’d)
	Slide 5: Open-source RISC-V processor RSD
	Slide 6: Contents
	Slide 7: Speculative Store Bypass (SSB) vulnerability (1)
	Slide 8: Speculative Store Bypass (SSB) vulnerability (2)
	Slide 9: Speculative Store Bypass (SSB) vulnerability (3)
	Slide 10: Speculative Store Bypass (SSB) vulnerability (4)
	Slide 11: Speculative Store Bypass (SSB) vulnerability (5)
	Slide 12: Speculative Store Bypass (SSB) vulnerability (6)
	Slide 13: Contents
	Slide 14: Attack verification (1)
	Slide 15: Attack verification (2)
	Slide 16: Attack verification (3)
	Slide 17: Attack verification (4)
	Slide 18: Attack verification (5)
	Slide 19: Attack verification (6)
	Slide 20: Contents
	Slide 21: Hardware mitigation (1)
	Slide 22: Hardware mitigation (2)
	Slide 23: Hardware mitigation (3)
	Slide 24: Hardware mitigation (4)
	Slide 25: Hardware mitigation (5)
	Slide 26: Hardware mitigation (6)
	Slide 27: Hardware mitigation (7)
	Slide 28: Conclusion

